Подборка по спектру дицианина и формулах для расчетов фильтров.
На данный момент в открытом доступе находятся два графика спектра дицианина:
1) Миллса-Одамса: в статье этих авторов за 1924 год (см. вторую страницу этой темы)
2) Cпектр из статьи 1984 года немецкого профессора Пенцкофера
http://epub.uni-regensburg.de/4013/1/ubr03503_ocr.pdf.
Спектральные характеристики красителя в статье Миллса-Одамса выражены через коэффициент экстинкции, а в статье Пенцкофера- через сечение поглощения (effective cross sections).
Чтобы преобразовать эти данные в более привычные показатели пропускания/поглощения, нужно обратиться к закону Бургера-Ламберта-Бера. Изучение этого закона позволяет разобраться в разновидностях коэффициентов экстинкции, используемых в статьях разных лет. Закон Бургера-Ламберта-Бера также позволяет лучше понять форму записи коэффициентов поглощения – откуда тут возникает логарифм.
Наконец вся «линейная» логика работы с фильтрами базируется на этом законе. Например, приведенные раньше рассуждения:
«Представьте кювету метровой толщины. Лучи на частотах пиков поглощения раствора пройдут в ней самый короткий путь. Лучи на частотах максимумов пропускания затухнут на гораздо большем расстоянии от «точек входа» в раствор. На каждом миллиметре пути у фотона есть определенная вероятность встретиться с препятствием и «погибнуть». На разных частотах она разная, что и отражает график спектра. На каждом миллиметре пути «выживает» и идет дальше определенный процент фотонов – и на каждой длине волны этот процент разный».
«Из ста входящих фотонов первый фильтр пропустит тридцать. Эти тридцать поступят на вход второго фильтра. Его пропускная способность тоже 30%. Значит на выходе второго фильтра будет 30% от 30, т.е. 9 штук».
В сети есть русский перевод работы Пьера Бургера «Оптический трактат о градации света», в которой встречается много подобных мыслей:
«…если некоторая толща поглощает половину света, то другая, следующая за первой и тождественная ей, поглощает не всю оставшуюся половину, а лишь половину этой половины, оставляя, следовательно, лишь четверть; поскольку все другие слои поглощают подобные же части, то ясно, что свет будет уменьшаться всегда в геометрической прогрессии».
Процесс вывода закона Бургера-Ламберта-Бера со всеми деталями можно увидеть на видео Youtube
/watch?v=bNXVXoCyN0s - не получается поставить полную ссылку
Там из равенства:
dI=-βIc dx (обозначения некоторыз величин изменены на принятые в отечественной литературе)
получается формула:
log10 (I0/I)= extinction coefficient (ε) * concentration (c) * path length (h) (1)
Ее преобразованием в правой части получаем выражение коэффициента экстинкции из статьи Миллса-Одамса (стр 1920).
ε*c= log10 (I0/I)/h (2)
Формула показателя экстинкции уточнена по инструкции к спектрофотометру Hilger, использовавшемся в том опыте.
http://s52.radikal.ru/i137/1312/47/b98f8e38d17f.jpg Значит экстинкция в статье Миллса-Одамса равна «современной» экстинкции*с. А ее формула в статье-не что иное, как вариант записи закона Бургера-Ламберта-Бера.
Кроме того выражение log10 (I0/I) соответствует понятию оптической плотности D (поглощению света всей массой фильтра). Значит, этот показатель - фрагмент формулы закона Бургера-Ламберта-Бера.
В книге Д. Лакович «Основы флуоресцентентной спектроскопии» приводится другой вариант записи закона Бургера-Ламберта-Бера.
Там из равенства
dI =-Iσn dx
выводится формула
ln (I0/I)= σnh
(3)
Переходом в формуле (3) к десятичным логарифмам, подставлением в нее значений из формулы (1) и n=(Navog*c)/10^3
находим, что «современная» экстинкция равна:
extinction=sigma*3,82*10^21
Тогда формулу (1) можно записать:
log10 (I0/I)= ε*с*h=sigma*3.82*10^21*c*h
или
D=3.82*sigma*c*h*10^21 (4)
По формуле (4), представляющей опять же один из вариантов записи закона Бургера-Ламберта-Бера, можно пересчитать значения сечения поглощения из статьи Пенцкофера в графики поглощения/пропускания для разных концентраций и толщин растворов.
Эти двое спектров дицианина приведены в конструкторе. Позже сделаю их отдельными рисунками.
Кстати в конструкторе поглощение вычисляется функцией LOG10(Пропускание), а пропускание - функцией СТЕПЕНЬ(10;поглощение). Есть и более сложные формулы – с рекомендуемыми поправками на отражение.