11.12.2005, 10:24 | #27 |
Banned Рег-ция: 21.11.2003 Адрес: Елгава. Сообщения: 16,829 Благодарности: 107 Поблагодарили 6,160 раз(а) в 3,620 сообщениях | Цитата: Сообщение от Д.И.В. Цитата: Сообщение от Ярослав Цитата: Сообщение от Д.И.В. Цитата: Сообщение от Ярослав некоторые считают, что наше пространство 32-мерно, недавно точно установили, что оно неэвклидово(т.е. чере одну точку можно провести нес одну прямую параллельно данной)(эмпиричеки)... | Интересно - как это? Хоть примерно? Две прямые считаются параллельными, если они никогда не пересекаются и если расстояние между ними всегда одинаково - так? При этом, они либо всегда будут находиться в одной плоскости, либо в разных - но так же параллельных друг другу плоскостях. | Это возможно! | Докажите. Желательно серьёзно. И с конкретными примерами, скажем в архитектуре или в построении железнодорожных путей. Как можно провести через точку, не лежащую на любой данной прямой более одной прямой, которая будет параллельна данной. Или скажете, что это аксиома, а аксиома, как известно доказательств не требует. Утверждение Лобачевского может быть применимо, скажем, в картографии - составлении различных карт, где нужно учитывать кривизну поверхности Земли. Но на плоскости данное утверждение, что можно провести более одной параллельной прямой через точку, не лежащую на данной прямой - не применимо. Это противоречит всем, сложившимся за тысячелетия, представлениям о действительности - с точки зрения классической геометрии, а следовательно и всем результатам человеческой деятельности, которая велась на основе этих представлений многие сотни лет. | Доказать? Элементарно, Ватсон! Возьмите стандартный лист бумаги у которого параллельные края и плавно изгибайте до необходимого пересечения. Вся геометрия рассчитана на линейное, двухмерное пространство, которое существует только теоретически. |
| |